## Tetrahedron Letters 51 (2010) 5181-5184

Contents lists available at ScienceDirect

**Tetrahedron Letters** 

journal homepage: www.elsevier.com/locate/tetlet

# Enhanced reactivity of silver- and gold-catalysed hydrogenations using silver(I) salts

Robert Crook<sup>a</sup>, John Deering<sup>a</sup>, Steven J. Fussell<sup>a,\*</sup>, Alan M. Happe<sup>a</sup>, Seán Mulvihill<sup>b</sup>

<sup>a</sup> Chemical Research & Development, Pfizer, Sandwich Laboratories, Sandwich CT13 9NJ, UK
<sup>b</sup> School of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK

## ARTICLE INFO

Article history: Received 18 June 2010 Revised 13 July 2010 Accepted 23 July 2010 Available online 3 August 2010

## ABSTRACT

A novel application of silver(I) salt promoters in silver- and gold-catalysed hydrogenations was applied to the chemoselective reduction of halonitrobenzenes resulting in excellent conversions and selectivities. This reactivity, coupled with the low cost of silver relative to more expensive precious metal counterparts, demonstrates this catalytic system as an attractive alternative for challenging chemoselective transformations.

© 2010 Elsevier Ltd. All rights reserved.

## 1. Introduction

Silver, gold and copper form a group in the periodic table traditionally known as the coinage metals. Silver and gold are relatively inert metals allowing for many of the applications we associate with them today. Their uses have ranged from jewellery and coins to electrical conductors. Silver is also used in mirrors and until recently, in photographic films and plates. However, with the advent of digital cameras the enormous reduction in the use of silver halide-based films has seen the price of silver decrease and remain low in comparison to other precious metals (Table 1).

It was not until the mid 20th century that silver was first identified as a metal for catalytic reactions, with the oxidation of carbon monoxide<sup>1</sup> and the decomposition of formic acid.<sup>2</sup> Since then, its application as a catalyst has been widely reported as illustrated by the oxidation of methanol,<sup>3</sup> the epoxidation of ethylene,<sup>4</sup> and more recently, as a potential alternative to the more expensive platinum used in catalytic converters for diesel engines.<sup>5</sup>

The use of gold in catalysis was initially reported in the early 1970s when Bond described the hydrogenation of olefins over supported gold catalysts.<sup>6</sup> Hutchings and Haruta et al. continued to make breakthroughs with their work around polyvinyl chloride (PVC) manufacture<sup>7</sup> and the use of gold nano-particles in carbon monoxide oxidation,<sup>8</sup> respectively.

The first report of using silver to catalyse hydrogenation reactions was described by Nagase et al.<sup>9</sup> However, it was not until the work by Claus, investigating the reduction of  $\alpha$ , $\beta$ -unsaturated aldehydes,<sup>10</sup> and Qui, with the reduction of chloronitrobenzenes,<sup>11</sup> that the chemoselective properties of supported silver catalysts were first illustrated. The use of gold catalysts for chemoselective reductions of aromatic nitro compounds<sup>12</sup> and the highly selective

\* Corresponding author. *E-mail address:* steven.fussell@pfizer.com (S.J. Fussell). hydrogenation of  $\alpha$ , $\beta$ -unsaturated aldehydes<sup>13</sup> have provided new and exciting possibilities for gold-catalysed hydrogenation reactions. Although excellent progress has been made in this field one drawback is the high temperatures and pressures required to achieve high conversions.

This Letter describes the design of a chemoselective hydrogenation of synthetically useful substrates using a novel combination of a silver on alumina catalyst, or a range of gold catalysts, coupled with a silver(1) salt promoter. This key combination of catalyst and additive is shown to facilitate low temperature and pressure hydrogenation reactions amenable to large scale manufacture using an inexpensive metal and support.

The reduction of chloronitrobenzenes to their respective chloroanilines is an important transformation in the production of pharmaceutical and agricultural products.<sup>14</sup> Iron in acidic reaction media<sup>15</sup> is routinely used in academia and small scale process research; however, disposal issues associated with the iron residues render the process undesirable for larger scale manufacturing. Alternative methodologies have also been reported using a range of precious metals including platinum,<sup>16</sup> palladium<sup>17</sup> and more recently gold,<sup>18</sup> as catalysts for the hydrogenation of chloronitrobenzenes. Although progress has been made, chemoselectivity can still be a problem with the hydrodehalogenated side product often observed (Fig. 1).

| Comparison of metal prices |                            |  |
|----------------------------|----------------------------|--|
| Metal                      | \$/Troy ounce <sup>a</sup> |  |
| Gold                       | 1119                       |  |
| Silver                     | 18                         |  |
| Platinum                   | 1668                       |  |
| Palladium                  | 490                        |  |
|                            |                            |  |

Table 1

<sup>a</sup> Metal prices provided by http://www.metalmarkets.org.uk/ 2nd April 2010.





<sup>0040-4039/\$ -</sup> see front matter  $\odot$  2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2010.07.143



Figure 1. Possible side reactions during the reduction of halonitroaromatics.

We started our investigation by comparing the effect of catalyst on the hydrogenation of *para*-chloronitrobenezene (*p*-CNB). A traditional palladium catalyst, 5% Pd/C 58 was examined in tandem with 5% Ag/Al<sub>2</sub>O<sub>3</sub> [both supplied by Johnson Matthey (J.M.)]. When the palladium catalyst was used complete conversion into the aniline **4** was observed even at a low pressure of 40 psi. Gratifyingly, when the 5% Ag/Al<sub>2</sub>O<sub>3</sub> catalyst was used, a selective reduction was achieved but with only 15% conversion into the desired *p*-chloroaniline **2** (100 °C, 300 psi H<sub>2</sub>). Thus, our next aim was to develop milder reaction conditions for the reduction of halonitrobenzenes whilst increasing the conversion during the hydrogenation. To achieve this goal, we investigated the possibility of enhancing the reactivity with an additive.

Akao et al. identified Rh/C doped with additives, such as  $Fe(OAc)_2$  and  $Ni(NO_3)_2 \cdot 6H_2O$ , as excellent promoters for accelerating the reduction of a range of functionalised nitrobenzenes including 4-chloronitrobenzene under hydrogenation conditions.<sup>19</sup> This approach appeared attractive and so a range of additives was

#### Table 2

Selective hydrogenation of p-CNB with JM 5% Ag/Al<sub>2</sub>O<sub>3</sub> catalyst

| NO <sub>2</sub>                    | 5% Ag/Al <sub>2</sub> O <sub>3</sub> (10 wt%)<br>Additive (1 eq) | NH <sub>2</sub>             |
|------------------------------------|------------------------------------------------------------------|-----------------------------|
| CI                                 | MeOH, H₂<br>250 psi<br>100 °C                                    | CI                          |
| Additive                           | Time (h)                                                         | Conversion <sup>a</sup> (%) |
| None                               | 20                                                               | 15                          |
| CF <sub>3</sub> SO <sub>3</sub> Ag | 20                                                               | 6                           |
| $Na_2CO_3$                         | 20                                                               | 10                          |
| NaOAc                              | 20                                                               | 11                          |
| CaCO <sub>3</sub>                  | 20                                                               | 16                          |
| AgBF <sub>4</sub>                  | 20                                                               | 18                          |
| $Ni(NO_3)_2 \cdot 6H_2O$           | 20                                                               | 18                          |
| $Fe(OAc)_2$                        | 20                                                               | 20                          |
| $Zn(OAc)_2$                        | 20                                                               | 35                          |
| $Cu(OAc)_2$                        | 20                                                               | 51                          |
| Ag <sub>2</sub> O                  | 20                                                               | 54                          |
| Ag <sub>2</sub> CO <sub>3</sub>    | 23 <sup>b</sup>                                                  | 29                          |
| Ag <sub>2</sub> CO <sub>3</sub>    | 6                                                                | 99                          |
| AgOAc                              | 21 <sup>b</sup>                                                  | 90                          |
| AgOAc                              | 6                                                                | 99                          |

<sup>a</sup> No hydrodehalogenation observed.

<sup>b</sup> Reactions performed at 100 psi.

investigated in conjunction with the  $Ag/Al_2O_3$  catalyst for the hydrogenation of *p*-CNB. The results are summarised in Table 2. Whilst excellent selectivity was achieved in all cases with the 5%  $Ag/Al_2O_3$  catalyst, conversion into the desired chloroaniline showed a greater dependence on the additive used. Several metal salts were beneficial with  $Zn(OAc)_2$  and  $Cu(OAc)_2$  showing some promise, but silver salts clearly had the most beneficial effect.

In order to achieve both high chemoselectivity and conversion, the presence of a silver cation and a basic anion was shown to be important. AgOAc and Ag<sub>2</sub>CO<sub>3</sub> in combination with 5% Ag/Al<sub>2</sub>O<sub>3</sub> yielded >99% of the chloroaniline at 100 °C and at a hydrogen pressure of 250 psi. Further investigations showed that the AgOAc and Ag<sub>2</sub>CO<sub>3</sub> additives were both effective at a reduced pressure of 100 psi, but with a much slower reaction rate. However, at these lower pressures, the AgOAc additive out-performed Ag<sub>2</sub>CO<sub>3</sub> resulting in high conversion and selectivity after 21 h.

Throughout the studies no hydrodechlorination of *p*-CNB or the chloroaniline was observed in any of the reactions. Furthermore, *p*-chloroaniline was not reduced to the undesired aniline when subjected to the Ag/Al<sub>2</sub>O<sub>3</sub> and AgOAc system for 40 h at 250 psi and 100 °C.

Next, we attempted to apply the reaction conditions to a range of functionalised halonitrobenzenes. Table 3 illustrates that all the halo-substituted nitrobenzenes were reduced selectively into the corresponding halo-substituted anilines with the exception of iodonitrobenzene where significant deiodination was observed. In general, in situ yields of >95% could be achieved at a temperature of 100 °C at 150 psi for the chloro and fluoronitrobenzenes. It was noted that the position of the halide had very little effect on the hydrogenation process. However, the electronic effect of the halogen did appear to have an important influence on the rate of hydrogenation as illustrated in Table 3.

The conversion data illustrates that the rate of hydrogenation decreases moving down group VII of the periodic table. Fluoroni-trobenzene can be reduced selectively within 1 h whereas reduction of the corresponding iodonitrobenzene was incomplete after 30 h at the same temperature and pressure.

Table 4 shows that a combination of AgOAc and  $Al_2O_3$  alone can also catalyse the selective hydrogenation of *p*-CNB to chloroaniline in yields of up to 39% with no hydrodehalogenation.

Interestingly, in all reactions containing AgOAc a thin silver film was observed. The silver film indicates the formation of silver particles from AgOAc during the hydrogenation process and this could be, in part, responsible for the enhanced conversion observed on addition of silver(I) salts to the reactions. The formation of these silver particles could provide an alternative catalytic site for the reaction to take place. However, Table 4 also suggests that it is only when all three components are combined, Ag catalyst, Al<sub>2</sub>O<sub>3</sub> and AgOAc, that high yields are observed at the temperatures and pressures stated.

We also studied the effect of additives on the gold-catalysed hydrogenations. Hence, the same selection of additives was investigated in conjunction with a 5% Au/Al<sub>2</sub>O<sub>3</sub> catalyst provided by Johnson Matthey. Table 5 lists the excellent selectivities obtained in all reactions with no hydrodehalogenation products observed. Once more the choice of additive had an important effect on the conversion. Without an additive the reaction was very slow under the conditions studied, but enhanced reaction rates were achieved using silver salts. With Ag<sub>2</sub>CO<sub>3</sub> and AgOAc the reaction was complete within 6 h at 100 °C and 250 psi. This evidence supports the importance of both a silver cation and a basic anion.

To obtain a greater understanding of the factors influencing the hydrogenation process this investigation was continued with the exploration of a diverse range of gold-supported catalysts. The hydrogenation of *p*-CNB was again used as the test reaction at 100 °C and 150 psi. The results shown in Table 6 illustrate that

NH<sub>2</sub>

## Table 3

Selective hydrogenation of a range of halonitroaromatics with JM 5%  $Ag/Al_2O_3$  catalyst



X= H, F, Cl, Br, I



<sup>a</sup> Reaction carried out at 50 °C.

<sup>b</sup> 10% of nitrobenzene also formed.

#### Table 4

Selective hydrogenation of *p*-CNB



| Catalyst                          | Additive                       | Time (h) | Conversion <sup>a</sup> (%) |
|-----------------------------------|--------------------------------|----------|-----------------------------|
| Ag/Al <sub>2</sub> O <sub>3</sub> | AgOAc                          | 6        | 99                          |
| None                              | AgOAc                          | 20       | 3                           |
| None                              | Al <sub>2</sub> O <sub>3</sub> | 20       | 4                           |
| None                              | $Al_2O_3$ and $AgOAc$          | 17       | 39                          |

<sup>a</sup> No hydrodehalogenation observed.

#### Table 5

## Selective hydrogenation of p-CNB with JM 5% Au/Al<sub>2</sub>O<sub>3</sub> catalyst



| Additive                                             | Time (h) | Conversion (%) <sup>a</sup> |
|------------------------------------------------------|----------|-----------------------------|
| No additive                                          | 20       | 11                          |
| Fe(OAc) <sub>2</sub>                                 | 20       | 2                           |
| Ni(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O | 20       | 3                           |
| $Zn(OAc)_2$                                          | 20       | 3                           |
| CF <sub>3</sub> SO <sub>3</sub> Ag                   | 20       | 3                           |
| NaOAc                                                | 20       | 3                           |
| AgBF <sub>4</sub>                                    | 20       | 7                           |
| $Cu(OAc)_2$                                          | 20       | 10                          |
| CaCO <sub>3</sub>                                    | 20       | 12                          |
| Na <sub>2</sub> CO <sub>3</sub>                      | 20       | 12                          |
| Ag <sub>2</sub> O                                    | 20       | 37                          |
| AgOAc                                                | 6        | 99                          |
| $Ag_2CO_3$                                           | 4        | 99                          |

<sup>a</sup> No hydrodehalogenation observed.

Table 6

Comparison of catalyst supports for the hydrogenation of p-CNB after 20 h



| Catalyst            | Additive | Conversion <sup>a</sup> (%) |
|---------------------|----------|-----------------------------|
| $Ag/Al_2O_3$        | None     | 10                          |
| $Ag/Al_2O_3$        | AgOAc    | 100                         |
| $Au/Al_2O_3$        | None     | 11                          |
| $Au/Al_2O_3$        | AgOAc    | 77                          |
| Au/SiO <sub>2</sub> | None     | 6                           |
| Au/SiO <sub>2</sub> | AgOAc    | 63                          |
| Au/TiO <sub>2</sub> | None     | 22                          |
| Au/TiO <sub>2</sub> | AgOAc    | 52                          |
| Au/C                | None     | 13                          |
| Au/C                | AgOAc    | 2                           |

<sup>a</sup> No hydrodehalogenation observed.

the solid support does have a large effect on the hydrogenation process.

It was found that a metallic oxide support was required to enhance reaction rates for the selective reduction of p-CNB. For example, when the Au/SiO<sub>2</sub> catalyst was doped with AgOAc, a 10-fold increase in conversion was observed when compared to the system without the additive. The corresponding reaction when carbon was used as a support, resulted in retardation of the rate when AgOAc was added, thus illustrating the importance of a metal support for this reaction.

During this investigation, silver and gold catalysts have been shown to be activated in the presence of a range of different additives and catalyse the hydrogenation of aromatic nitro compounds in excellent yields and selectivity. The best system utilised silver acetate and the procedure was optimised to more commercially advantageous temperatures and pressures without compromising chemical performance. The results described herein highlight the potential of supported silver and gold catalysts activated by AgOAc as excellent hydrogenation catalysts for selective synthesis of haloanilines.

# 2. Typical experimental procedure for the Ag/Al<sub>2</sub>O<sub>3</sub> and AgOAcmediated hydrogenation of chloronitrobenzene



To a GC vial was added chloronitrobenzene (50 mg, 0.313 mmol) in MeOH (0.5 ml) along with a micromagnetic stirrer bar and the contents agitated for 5 min. The 5% Ag/Al<sub>2</sub>O<sub>3</sub> catalyst (5 mg, 10 wt %) was then charged into the vial together with AgOAc (52.2 mg, 0.313 mmol). The vial was then capped and crimped, and the septum was pierced with a needle to allow H<sub>2</sub> ingress. The hydrogenation was performed at 100 °C under H<sub>2</sub> (150 psi) in a HEL CAT18 autoclave. Using an Eppendorf pipette the reaction was sampled every 1 h for 24 h. The extent of conversion was determined by reverse phase HPLC using an Agilent Zorbax RRHT 1.8 µm column.

# Acknowledgements

The authors would like to thank Neal Sach, Charles Gordon, Andrew Derrick, Julian Smith, Stephen Challenger and Pieter De Koning for their scientific input, and Johnson Matthey for their donation of a novel silver catalyst.

### **References and notes**

- 1. Benton, A. F.; Bell, R. T. J. Am. Chem. Soc. 1934, 56, 501-505.
- 2. Lawson, A. J. Catal. 1968, 11, 295-304.
- 3. Guo, D. J.; Li, H. L. Carbon 2005, 43, 1259-1264.
- Bal'zhinimaev, B. S. Kinet. Catal. 1999, 40, 795-810. 4.
- 5. Lindfors, L. E.; Eränen, K.; Klingstedt, F.; Murzin, D. Y. Top. Catal. 2004, 28, 185-189.
- 6. Bond, G. C.; Sermon, P. A.; Webb, D.; Buchanan, A.; Wells, P. B. J. Chem. Soc., Chem. Commun. 1973, 444-445.
- Hutchings, G. J. J. Catal. 1985, 96, 292-295. 7.
- 8. Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Chem. Lett. 1987, 405-408.
- 9. Nagase, Y.; Hattori, H.; Tanabe, K. Chem. Lett. 1983, 1615-1618.
- 10. Volckmar, C. E.; Bron, M.; Bentrup, U.; Martin, A.; Claus, P. J. Catal. 2009, 261, 1 - 8
- 11. Chen, Y.; Wang, C.; Liu, H.; Qiu, J.; Bao, X. Chem. Commun. 2005, 5298-5300.
- Corma, A.; Serna, P. Science **2006**, 313, 332–334. 12.
- Claus, P. Appl. Catal., A. 2005, 291, 222-229. 13.
- Kratky, V.; Kralik, M.; Mecarova, M.; Stolcova, M.; Zalibera, L.; Hronec, M. Appl. 14. Catal. 2002, 235, 225-231.
- Werner, J. Ind. Eng. Chem. 1949, 41, 1841-1846. 15.
- 16. Strutz, J.; Hopf, E. Chem. Ing. Tech. 1988, 60, 297-298.
- 17. Liu, M.; Gao, F.; Liu, J. Hecheng Huaxue 2008, 16, 252-255.
- Chen, Y.; Qiu, J.; Wang, X.; Xiu, J. J. Catal. **2006**, 242, 227–230.
   Akao, A.; Sato, K.; Nonoyama, N.; Mase, T.; Yasuda, N. Org. Process Res. Dev. 2006, 10, 1178-1183.